28 KiB
noble-curves
Audited & minimal JS implementation of elliptic curve cryptography.
- noble family, zero dependencies
- Short Weierstrass, Edwards, Montgomery curves
- ECDSA, EdDSA, Schnorr, BLS signature schemes, ECDH key agreement
- #️⃣ hash to curve for encoding or hashing an arbitrary string to an elliptic curve point
- 🧜♂️ Poseidon ZK-friendly hash
- 🏎 Ultra-fast, hand-optimized for caveats of JS engines
- 🔍 Unique tests ensure correctness. Wycheproof vectors included
- 🔻 Tree-shaking-friendly: there is no entry point, which ensures small size of your app
Package consists of two parts:
- Abstract, zero-dependency EC algorithms
- Implementations, utilizing one dependency
@noble/hashes
, providing ready-to-use:- NIST curves secp192r1/P192, secp224r1/P224, secp256r1/P256, secp384r1/P384, secp521r1/P521
- SECG curve secp256k1
- ed25519/curve25519/x25519/ristretto255, edwards448/curve448/x448 RFC7748 / RFC8032 / ZIP215 stuff
- pairing-friendly curves bls12-381, bn254
Check out Upgrading if you've previously used single-feature noble packages (secp256k1, ed25519). See In the wild for real-world software that uses curves.
This library belongs to noble crypto
noble-crypto — high-security, easily auditable set of contained cryptographic libraries and tools.
- No dependencies, protection against supply chain attacks
- Easily auditable TypeScript/JS code
- Supported in all major browsers and stable node.js versions
- All releases are signed with PGP keys
- Check out homepage & all libraries: curves (secp256k1, ed25519), hashes
Usage
Use NPM for browser / node.js:
npm install @noble/curves
For Deno, use it with npm specifier. In browser, you could also include the single file from GitHub's releases page.
The library is tree-shaking-friendly and does not expose root entry point as import * from '@noble/curves'
.
Instead, you need to import specific primitives. This is done to ensure small size of your apps.
Implementations
Each curve can be used in the following way:
import { secp256k1 } from '@noble/curves/secp256k1'; // ECMAScript Modules (ESM) and Common.js
// import { secp256k1 } from 'npm:@noble/curves@1.2.0/secp256k1'; // Deno
const priv = secp256k1.utils.randomPrivateKey();
const pub = secp256k1.getPublicKey(priv);
const msg = new Uint8Array(32).fill(1);
const sig = secp256k1.sign(msg, priv);
secp256k1.verify(sig, msg, pub) === true;
const privHex = '46c930bc7bb4db7f55da20798697421b98c4175a52c630294d75a84b9c126236'
const pub2 = secp256k1.getPublicKey(privHex); // keys & other inputs can be Uint8Array-s or hex strings
// Follows hash-to-curve specification to encode arbitrary hashes to EC points
import { hashToCurve, encodeToCurve } from '@noble/curves/secp256k1';
hashToCurve('0102abcd');
All curves:
import { secp256k1, schnorr } from '@noble/curves/secp256k1';
import { ed25519, ed25519ph, ed25519ctx, x25519, RistrettoPoint } from '@noble/curves/ed25519';
import { ed448, ed448ph, ed448ctx, x448 } from '@noble/curves/ed448';
import { p256 } from '@noble/curves/p256';
import { p384 } from '@noble/curves/p384';
import { p521 } from '@noble/curves/p521';
import { pallas, vesta } from '@noble/curves/pasta';
import * as stark from '@noble/curves/stark';
import { bls12_381 } from '@noble/curves/bls12-381';
import { bn254 } from '@noble/curves/bn';
import { jubjub } from '@noble/curves/jubjub';
Weierstrass curves feature recovering public keys from signatures and ECDH key agreement:
// extraEntropy https://moderncrypto.org/mail-archive/curves/2017/000925.html
const sigImprovedSecurity = secp256k1.sign(msg, priv, { extraEntropy: true });
sig.recoverPublicKey(msg) === pub; // public key recovery
const someonesPub = secp256k1.getPublicKey(secp256k1.utils.randomPrivateKey());
const shared = secp256k1.getSharedSecret(priv, someonesPub); // ECDH (elliptic curve diffie-hellman)
secp256k1 has schnorr signature implementation which follows BIP340:
import { schnorr } from '@noble/curves/secp256k1';
const priv = schnorr.utils.randomPrivateKey();
const pub = schnorr.getPublicKey(priv);
const msg = new TextEncoder().encode('hello');
const sig = schnorr.sign(msg, priv);
const isValid = schnorr.verify(sig, msg, pub);
console.log(isValid);
ed25519 module has ed25519ctx / ed25519ph variants, x25519 ECDH and ristretto255. It follows ZIP215 and can be used in consensus-critical applications:
import { ed25519 } from '@noble/curves/ed25519';
// Variants from RFC8032: with context, prehashed
import { ed25519ctx, ed25519ph } from '@noble/curves/ed25519';
// ECDH using curve25519 aka x25519
import { x25519 } from '@noble/curves/ed25519';
const priv = 'a546e36bf0527c9d3b16154b82465edd62144c0ac1fc5a18506a2244ba449ac4';
const pub = 'e6db6867583030db3594c1a424b15f7c726624ec26b3353b10a903a6d0ab1c4c';
x25519.getSharedSecret(priv, pub) === x25519.scalarMult(priv, pub);
x25519.getPublicKey(priv) === x25519.scalarMultBase(priv);
// hash-to-curve
import { hashToCurve, encodeToCurve } from '@noble/curves/ed25519';
import { RistrettoPoint } from '@noble/curves/ed25519';
const rp = RistrettoPoint.fromHex(
'6a493210f7499cd17fecb510ae0cea23a110e8d5b901f8acadd3095c73a3b919'
);
RistrettoPoint.hashToCurve('Ristretto is traditionally a short shot of espresso coffee');
// also has add(), equals(), multiply(), toRawBytes() methods
ed448 module is basically the same:
import { ed448, ed448ph, ed448ctx, x448 } from '@noble/curves/ed448';
import { hashToCurve, encodeToCurve } from '@noble/curves/ed448';
BLS12-381 pairing-friendly Barreto-Lynn-Scott elliptic curve construction allows to construct zk-SNARKs at the 128-bit security and use aggregated, batch-verifiable threshold signatures, using Boneh-Lynn-Shacham signature scheme.
import { bls12_381 as bls } from '@noble/curves/bls12-381';
const privateKey = '67d53f170b908cabb9eb326c3c337762d59289a8fec79f7bc9254b584b73265c';
const message = '64726e3da8';
const publicKey = bls.getPublicKey(privateKey);
const signature = bls.sign(message, privateKey);
const isValid = bls.verify(signature, message, publicKey);
console.log({ publicKey, signature, isValid });
// Sign 1 msg with 3 keys
const privateKeys = [
'18f020b98eb798752a50ed0563b079c125b0db5dd0b1060d1c1b47d4a193e1e4',
'ed69a8c50cf8c9836be3b67c7eeff416612d45ba39a5c099d48fa668bf558c9c',
'16ae669f3be7a2121e17d0c68c05a8f3d6bef21ec0f2315f1d7aec12484e4cf5',
];
const messages = ['d2', '0d98', '05caf3'];
const publicKeys = privateKeys.map(bls.getPublicKey);
const signatures2 = privateKeys.map((p) => bls.sign(message, p));
const aggPubKey2 = bls.aggregatePublicKeys(publicKeys);
const aggSignature2 = bls.aggregateSignatures(signatures2);
const isValid2 = bls.verify(aggSignature2, message, aggPubKey2);
console.log({ signatures2, aggSignature2, isValid2 });
// Sign 3 msgs with 3 keys
const signatures3 = privateKeys.map((p, i) => bls.sign(messages[i], p));
const aggSignature3 = bls.aggregateSignatures(signatures3);
const isValid3 = bls.verifyBatch(aggSignature3, messages, publicKeys);
console.log({ publicKeys, signatures3, aggSignature3, isValid3 });
// Pairings
// bls.pairing(PointG1, PointG2)
Abstract API
Abstract API allows to define custom curves. All arithmetics is done with JS bigints over finite fields,
which is defined from modular
sub-module. For scalar multiplication, we use w-ary non-adjacent form (wNAF) method.
Precomputes are enabled for weierstrass and edwards BASE points of a curve. You could precompute any other point (e.g. for ECDH)
using utils.precompute()
method.
There are following zero-dependency algorithms:
- abstract/weierstrass: Short Weierstrass curve
- abstract/edwards: Twisted Edwards curve
- abstract/montgomery: Montgomery curve
- abstract/hash-to-curve: Hashing strings to curve points
- abstract/poseidon: Poseidon hash
- abstract/modular: Modular arithmetics utilities
- abstract/utils: General utilities
abstract/weierstrass: Short Weierstrass curve
import { weierstrass } from '@noble/curves/abstract/weierstrass';
Short Weierstrass curve's formula is y² = x³ + ax + b
. weierstrass
expects arguments a
, b
, field Fp
, curve order n
, cofactor h
and coordinates Gx
, Gy
of generator point.
k
generation is done deterministically, following RFC6979.
For this you will need hmac
& hash
, which in our implementations is provided by noble-hashes.
If you're using different hashing library, make sure to wrap it in the following interface:
export type CHash = {
(message: Uint8Array): Uint8Array;
blockLen: number;
outputLen: number;
create(): any;
};
Weierstrass points:
- Exported as
ProjectivePoint
- Represented in projective (homogeneous) coordinates: (x, y, z) ∋ (x=x/z, y=y/z)
- Use complete exception-free formulas for addition and doubling
- Can be decoded/encoded from/to Uint8Array / hex strings using
ProjectivePoint.fromHex
andProjectivePoint#toRawBytes()
- Have
assertValidity()
which checks for being on-curve - Have
toAffine()
andx
/y
getters which convert to 2d xy affine coordinates
// T is usually bigint, but can be something else like complex numbers in BLS curves
export interface ProjPointType<T> extends Group<ProjPointType<T>> {
readonly px: T;
readonly py: T;
readonly pz: T;
multiply(scalar: bigint): ProjPointType<T>;
multiplyUnsafe(scalar: bigint): ProjPointType<T>;
multiplyAndAddUnsafe(Q: ProjPointType<T>, a: bigint, b: bigint): ProjPointType<T> | undefined;
toAffine(iz?: T): AffinePoint<T>;
isTorsionFree(): boolean;
clearCofactor(): ProjPointType<T>;
assertValidity(): void;
hasEvenY(): boolean;
toRawBytes(isCompressed?: boolean): Uint8Array;
toHex(isCompressed?: boolean): string;
}
// Static methods for 3d XYZ points
export interface ProjConstructor<T> extends GroupConstructor<ProjPointType<T>> {
new (x: T, y: T, z: T): ProjPointType<T>;
fromAffine(p: AffinePoint<T>): ProjPointType<T>;
fromHex(hex: Hex): ProjPointType<T>;
fromPrivateKey(privateKey: PrivKey): ProjPointType<T>;
}
ECDSA signatures are represented by Signature
instances and can be described by the interface:
export interface SignatureType {
readonly r: bigint;
readonly s: bigint;
readonly recovery?: number;
assertValidity(): void;
addRecoveryBit(recovery: number): SignatureType;
hasHighS(): boolean;
normalizeS(): SignatureType;
recoverPublicKey(msgHash: Hex): ProjPointType<bigint>;
toCompactRawBytes(): Uint8Array;
toCompactHex(): string;
// DER-encoded
toDERRawBytes(isCompressed?: boolean): Uint8Array;
toDERHex(isCompressed?: boolean): string;
}
Example implementing secq256k1 (NOT secp256k1) cycle of secp256k1 with Fp/N flipped.
import { weierstrass } from '@noble/curves/abstract/weierstrass';
import { Field } from '@noble/curves/abstract/modular'; // finite field, mod arithmetics done over it
import { sha256 } from '@noble/hashes/sha256'; // 3rd-party sha256() of type utils.CHash, with blockLen/outputLen
import { hmac } from '@noble/hashes/hmac'; // 3rd-party hmac() that will accept sha256()
import { concatBytes, randomBytes } from '@noble/hashes/utils'; // 3rd-party utilities
const secq256k1 = weierstrass({
// secq256k1: cycle of secp256k1 with Fp/N flipped.
a: 0n,
b: 7n,
Fp: Field(2n ** 256n - 432420386565659656852420866394968145599n),
n: 2n ** 256n - 2n ** 32n - 2n ** 9n - 2n ** 8n - 2n ** 7n - 2n ** 6n - 2n ** 4n - 1n,
Gx: 55066263022277343669578718895168534326250603453777594175500187360389116729240n,
Gy: 32670510020758816978083085130507043184471273380659243275938904335757337482424n,
hash: sha256,
hmac: (key: Uint8Array, ...msgs: Uint8Array[]) => hmac(sha256, key, concatBytes(...msgs)),
randomBytes,
});
// All curves expose same generic interface.
const priv = secq256k1.utils.randomPrivateKey();
secq256k1.getPublicKey(priv); // Convert private key to public.
const sig = secq256k1.sign(msg, priv); // Sign msg with private key.
secq256k1.verify(sig, msg, priv); // Verify if sig is correct.
const point = secq256k1.Point.BASE; // Elliptic curve Point class and BASE point static var.
point.add(point).equals(point.double()); // add(), equals(), double() methods
point.subtract(point).equals(secq256k1.Point.ZERO); // subtract() method, ZERO static var
point.negate(); // Flips point over x/y coordinate.
point.multiply(31415n); // Multiplication of Point by scalar.
point.assertValidity(); // Checks for being on-curve
point.toAffine(); // Converts to 2d affine xy coordinates
secq256k1.CURVE.n;
secq256k1.CURVE.Fp.mod();
secq256k1.CURVE.hash();
weierstrass()
returns CurveFn
:
export type CurveFn = {
CURVE: ReturnType<typeof validateOpts>;
getPublicKey: (privateKey: PrivKey, isCompressed?: boolean) => Uint8Array;
getSharedSecret: (privateA: PrivKey, publicB: Hex, isCompressed?: boolean) => Uint8Array;
sign: (msgHash: Hex, privKey: PrivKey, opts?: SignOpts) => SignatureType;
verify: (
signature: Hex | SignatureType,
msgHash: Hex,
publicKey: Hex,
opts?: { lowS?: boolean; prehash?: boolean }
) => boolean;
ProjectivePoint: ProjectivePointConstructor;
Signature: SignatureConstructor;
utils: {
isValidPrivateKey(privateKey: PrivKey): boolean;
randomPrivateKey: () => Uint8Array;
};
};
abstract/edwards: Twisted Edwards curve
Twisted Edwards curve's formula is ax² + y² = 1 + dx²y²
. You must specify a
, d
, field Fp
, order n
, cofactor h
and coordinates Gx
, Gy
of generator point.
For EdDSA signatures, hash
param required. adjustScalarBytes
which instructs how to change private scalars could be specified.
Edwards points:
- Exported as
ExtendedPoint
- Represented in extended coordinates: (x, y, z, t) ∋ (x=x/z, y=y/z)
- Use complete exception-free formulas for addition and doubling
- Can be decoded/encoded from/to Uint8Array / hex strings using
ExtendedPoint.fromHex
andExtendedPoint#toRawBytes()
- Have
assertValidity()
which checks for being on-curve - Have
toAffine()
andx
/y
getters which convert to 2d xy affine coordinates - Have
isTorsionFree()
,clearCofactor()
andisSmallOrder()
utilities to handle torsions
export interface ExtPointType extends Group<ExtPointType> {
readonly ex: bigint;
readonly ey: bigint;
readonly ez: bigint;
readonly et: bigint;
assertValidity(): void;
multiply(scalar: bigint): ExtPointType;
multiplyUnsafe(scalar: bigint): ExtPointType;
isSmallOrder(): boolean;
isTorsionFree(): boolean;
clearCofactor(): ExtPointType;
toAffine(iz?: bigint): AffinePoint<bigint>;
}
// Static methods of Extended Point with coordinates in X, Y, Z, T
export interface ExtPointConstructor extends GroupConstructor<ExtPointType> {
new (x: bigint, y: bigint, z: bigint, t: bigint): ExtPointType;
fromAffine(p: AffinePoint<bigint>): ExtPointType;
fromHex(hex: Hex): ExtPointType;
fromPrivateKey(privateKey: Hex): ExtPointType;
}
Example implementing edwards25519:
import { twistedEdwards } from '@noble/curves/abstract/edwards';
import { div } from '@noble/curves/abstract/modular';
import { sha512 } from '@noble/hashes/sha512';
const ed25519 = twistedEdwards({
a: -1n,
d: div(-121665n, 121666n, 2n ** 255n - 19n), // -121665n/121666n
P: 2n ** 255n - 19n,
n: 2n ** 252n + 27742317777372353535851937790883648493n,
h: 8n,
Gx: 15112221349535400772501151409588531511454012693041857206046113283949847762202n,
Gy: 46316835694926478169428394003475163141307993866256225615783033603165251855960n,
hash: sha512,
randomBytes,
adjustScalarBytes(bytes) {
// optional; but mandatory in ed25519
bytes[0] &= 248;
bytes[31] &= 127;
bytes[31] |= 64;
return bytes;
},
} as const);
twistedEdwards()
returns CurveFn
of following type:
export type CurveFn = {
CURVE: ReturnType<typeof validateOpts>;
getPublicKey: (privateKey: PrivKey, isCompressed?: boolean) => Uint8Array;
sign: (message: Hex, privateKey: Hex) => Uint8Array;
verify: (sig: SigType, message: Hex, publicKey: PubKey, context?: Hex) => boolean;
ExtendedPoint: ExtendedPointConstructor;
Signature: SignatureConstructor;
utils: {
randomPrivateKey: () => Uint8Array;
getExtendedPublicKey: (key: PrivKey) => {
head: Uint8Array;
prefix: Uint8Array;
scalar: bigint;
point: PointType;
pointBytes: Uint8Array;
};
};
};
abstract/montgomery: Montgomery curve
The module contains methods for x-only ECDH on Curve25519 / Curve448 from RFC7748. Proper Elliptic Curve Points are not implemented yet.
You must specify curve field, a24
special variable, montgomeryBits
, nByteLength
, and coordinate u
of generator point.
import { montgomery } from '@noble/curves/abstract/montgomery';
const x25519 = montgomery({
P: 2n ** 255n - 19n,
a24: 121665n, // TODO: change to a
montgomeryBits: 255,
nByteLength: 32,
Gu: '0900000000000000000000000000000000000000000000000000000000000000',
// Optional params
powPminus2: (x: bigint): bigint => {
return mod.pow(x, P - 2, P);
},
adjustScalarBytes(bytes) {
bytes[0] &= 248;
bytes[31] &= 127;
bytes[31] |= 64;
return bytes;
},
});
abstract/hash-to-curve: Hashing strings to curve points
The module allows to hash arbitrary strings to elliptic curve points. Implements hash-to-curve v11.
expand_message_xmd
(spec) produces a uniformly random byte string using a cryptographic hash function H that outputs b bits.
function expand_message_xmd(msg: Uint8Array, DST: Uint8Array, lenInBytes: number, H: CHash): Uint8Array;
function expand_message_xof(msg: Uint8Array, DST: Uint8Array, lenInBytes: number, k: number, H: CHash): Uint8Array;
hash_to_field(msg, count, options)
(spec)
hashes arbitrary-length byte strings to a list of one or more elements of a finite field F.
_ msg
a byte string containing the message to hash
_ count
the number of elements of F to output
_ options
{DST: string, p: bigint, m: number, k: number, expand: 'xmd' | 'xof', hash: H}
_ Returns [u_0, ..., u_(count - 1)]
, a list of field elements.
function hash_to_field(msg: Uint8Array, count: number, options: htfOpts): bigint[][];
type htfOpts = {
DST: string; // a domain separation tag defined in section 2.2.5
// p: the characteristic of F
// where F is a finite field of characteristic p and order q = p^m
p: bigint;
// m: the extension degree of F, m >= 1
// where F is a finite field of characteristic p and order q = p^m
m: number;
k: number; // the target security level for the suite in bits defined in section 5.1
expand?: 'xmd' | 'xof'; // option to use a message that has already been processed by expand_message_xmd
// Hash functions for: expand_message_xmd is appropriate for use with a
// wide range of hash functions, including SHA-2, SHA-3, BLAKE2, and others.
// BBS+ uses blake2: https://github.com/hyperledger/aries-framework-go/issues/2247
// TODO: verify that hash is shake if expand==='xof' via types
hash: CHash;
};
abstract/poseidon: Poseidon hash
Implements Poseidon ZK-friendly hash.
There are many poseidon variants with different constants.
We don't provide them: you should construct them manually.
The only variant provided resides in stark
module: inspect it for proper usage.
import { poseidon } from '@noble/curves/abstract/poseidon';
type PoseidonOpts = {
Fp: Field<bigint>;
t: number;
roundsFull: number;
roundsPartial: number;
sboxPower?: number;
reversePartialPowIdx?: boolean; // Hack for stark
mds: bigint[][];
roundConstants: bigint[][];
};
const instance = poseidon(opts: PoseidonOpts);
abstract/bls
The module abstracts BLS (Barreto-Lynn-Scott) primitives. In theory you should be able to write BLS12-377, BLS24, and others with it.
abstract/modular: Modular arithmetics utilities
The module also contains useful hashToPrivateScalar
method which allows to create
scalars (e.g. private keys) with the modulo bias being neglible. It follows
FIPS 186 B.4.1. Requires at least 40 bytes of input for 32-byte private key.
import * as mod from '@noble/curves/abstract/modular';
const fp = mod.Field(2n ** 255n - 19n); // Finite field over 2^255-19
fp.mul(591n, 932n); // multiplication
fp.pow(481n, 11024858120n); // exponentiation
fp.div(5n, 17n); // division: 5/17 mod 2^255-19 == 5 * invert(17)
fp.sqrt(21n); // square root
// Generic non-FP utils are also available
mod.mod(21n, 10n); // 21 mod 10 == 1n; fixed version of 21 % 10
mod.invert(17n, 10n); // invert(17) mod 10; modular multiplicative inverse
mod.invertBatch([1n, 2n, 4n], 21n); // => [1n, 11n, 16n] in one inversion
mod.hashToPrivateScalar(sha512_of_something, secp256r1.n);
abstract/utils: General utilities
import * as utils from '@noble/curves/abstract/utils';
utils.bytesToHex(Uint8Array.from([0xde, 0xad, 0xbe, 0xef]));
utils.hexToBytes('deadbeef');
utils.hexToNumber();
utils.bytesToNumberBE(Uint8Array.from([0xde, 0xad, 0xbe, 0xef]));
utils.bytesToNumberLE(Uint8Array.from([0xde, 0xad, 0xbe, 0xef]));
utils.numberToBytesBE(123n);
utils.numberToBytesLE(123n);
utils.numberToHexUnpadded(123n);
utils.concatBytes(Uint8Array.from([0xde, 0xad]), Uint8Array.from([0xbe, 0xef]));
utils.nLength(255n);
utils.equalBytes(Uint8Array.from([0xde]), Uint8Array.from([0xde]));
Security
The library had no prior security audit.
Timing attack considerations: we are using non-CT bigints. However, JIT-compiler and Garbage Collector make "constant time" extremely hard to achieve in a scripting language. Which means any other JS library can't have constant-timeness. Even statically typed Rust, a language without GC, makes it harder to achieve constant-time for some cases. If your goal is absolute security, don't use any JS lib — including bindings to native ones. Use low-level libraries & languages. Nonetheless we're targetting algorithmic constant time.
We consider infrastructure attacks like rogue NPM modules very important; that's why it's crucial to minimize the amount of 3rd-party dependencies & native bindings. If your app uses 500 dependencies, any dep could get hacked and you'll be downloading malware with every npm install
. Our goal is to minimize this attack vector.
Speed
Benchmark results on Apple M2 with node v19:
secp256k1
init x 58 ops/sec @ 17ms/op
getPublicKey x 5,640 ops/sec @ 177μs/op
sign x 3,909 ops/sec @ 255μs/op
verify x 780 ops/sec @ 1ms/op
getSharedSecret x 465 ops/sec @ 2ms/op
recoverPublicKey x 740 ops/sec @ 1ms/op
schnorr.sign x 597 ops/sec @ 1ms/op
schnorr.verify x 775 ops/sec @ 1ms/op
P256
init x 31 ops/sec @ 31ms/op
getPublicKey x 5,607 ops/sec @ 178μs/op
sign x 3,930 ops/sec @ 254μs/op
verify x 540 ops/sec @ 1ms/op
P384
init x 15 ops/sec @ 63ms/op
getPublicKey x 2,622 ops/sec @ 381μs/op
sign x 1,913 ops/sec @ 522μs/op
verify x 222 ops/sec @ 4ms/op
P521
init x 8 ops/sec @ 119ms/op
getPublicKey x 1,371 ops/sec @ 729μs/op
sign x 1,090 ops/sec @ 917μs/op
verify x 118 ops/sec @ 8ms/op
ed25519
init x 47 ops/sec @ 20ms/op
getPublicKey x 9,414 ops/sec @ 106μs/op
sign x 4,516 ops/sec @ 221μs/op
verify x 912 ops/sec @ 1ms/op
ed448
init x 17 ops/sec @ 56ms/op
getPublicKey x 3,363 ops/sec @ 297μs/op
sign x 1,615 ops/sec @ 619μs/op
verify x 319 ops/sec @ 3ms/op
stark
init x 35 ops/sec @ 28ms/op
pedersen x 884 ops/sec @ 1ms/op
poseidon x 8,598 ops/sec @ 116μs/op
verify x 528 ops/sec @ 1ms/op
bls12-381
init x 32 ops/sec @ 30ms/op
getPublicKey 1-bit x 858 ops/sec @ 1ms/op
getPublicKey x 858 ops/sec @ 1ms/op
sign x 49 ops/sec @ 20ms/op
verify x 34 ops/sec @ 28ms/op
pairing x 94 ops/sec @ 10ms/op
aggregatePublicKeys/8 x 116 ops/sec @ 8ms/op
aggregatePublicKeys/32 x 31 ops/sec @ 31ms/op
aggregatePublicKeys/128 x 7 ops/sec @ 125ms/op
aggregateSignatures/8 x 45 ops/sec @ 22ms/op
aggregateSignatures/32 x 11 ops/sec @ 84ms/op
aggregateSignatures/128 x 3 ops/sec @ 332ms/opp
In the wild
Elliptic curve calculator: paulmillr.com/ecc.
- secp256k1
- ed25519
- BLS12-381
- Threshold sigs demo genthresh.com
- BBS signatures github.com/Wind4Greg/BBS-Draft-Checks following draft-irtf-cfrg-bbs-signatures-latest
Upgrading
If you're coming from single-feature noble packages, the following changes need to be kept in mind:
- 2d affine (x, y) points have been removed to reduce complexity and improve speed
- Removed
number
support as a type for private keys,bigint
is still supported mod
,invert
are no longer present inutils
: use@noble/curves/abstract/modular
Upgrading from @noble/secp256k1 1.7:
- Compressed (33-byte) public keys are now returned by default, instead of uncompressed
- Methods are now synchronous. Setting
secp.utils.hmacSha256
is no longer required sign()
der
,recovered
options were removedcanonical
was renamed tolowS
- Return type is now
{ r: bigint, s: bigint, recovery: number }
instance ofSignature
verify()
strict
was renamed tolowS
recoverPublicKey()
: moved to sig instanceSignature#recoverPublicKey(msgHash)
Point
was removed: useProjectivePoint
in xyz coordinatesutils
: Many methods were removed, others were moved toschnorr
namespace
Upgrading from @noble/ed25519 1.7:
- Methods are now synchronous. Setting
secp.utils.hmacSha256
is no longer required - ed25519ph, ed25519ctx
Point
was removed: useExtendedPoint
in xyzt coordinatesSignature
was removedgetSharedSecret
was removed: use separate x25519 sub-modulebigint
is no longer allowed ingetPublicKey
,sign
,verify
. Reason: ed25519 is LE, can lead to bugs
Contributing & testing
- Clone the repository
npm install
to install build dependencies like TypeScriptnpm run build
to compile TypeScript codenpm run test
will execute all main tests
License
The MIT License (MIT)
Copyright (c) 2022 Paul Miller (https://paulmillr.com)
See LICENSE file.