go-ethereum/core/state/state_object.go

613 lines
20 KiB
Go
Raw Permalink Normal View History

2015-07-07 02:54:22 +02:00
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
2015-07-07 02:54:22 +02:00
//
// The go-ethereum library is free software: you can redistribute it and/or modify
2015-07-07 02:54:22 +02:00
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
2015-07-07 02:54:22 +02:00
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
2015-07-07 02:54:22 +02:00
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
2015-07-07 02:54:22 +02:00
2014-10-31 14:43:14 +01:00
package state
import (
"bytes"
"fmt"
"io"
"maps"
"sync"
"time"
2015-03-16 11:27:38 +01:00
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/tracing"
"github.com/ethereum/go-ethereum/core/types"
2015-03-16 11:59:52 +01:00
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie/trienode"
"github.com/holiman/uint256"
)
// hasherPool holds a pool of hashers used by state objects during concurrent
// trie updates.
var hasherPool = sync.Pool{
New: func() interface{} {
return crypto.NewKeccakState()
},
}
type Storage map[common.Hash]common.Hash
func (s Storage) Copy() Storage {
return maps.Clone(s)
}
// stateObject represents an Ethereum account which is being modified.
//
// The usage pattern is as follows:
// - First you need to obtain a state object.
// - Account values as well as storages can be accessed and modified through the object.
// - Finally, call commit to return the changes of storage trie and update account data.
type stateObject struct {
db *StateDB
address common.Address // address of ethereum account
addrHash common.Hash // hash of ethereum address of the account
origin *types.StateAccount // Account original data without any change applied, nil means it was not existent
data types.StateAccount // Account data with all mutations applied in the scope of block
// Write caches.
trie Trie // storage trie, which becomes non-nil on first access
code []byte // contract bytecode, which gets set when code is loaded
originStorage Storage // Storage cache of original entries to dedup rewrites
pendingStorage Storage // Storage entries that need to be flushed to disk, at the end of an entire block
dirtyStorage Storage // Storage entries that have been modified in the current transaction execution, reset for every transaction
// Cache flags.
dirtyCode bool // true if the code was updated
// Flag whether the account was marked as self-destructed. The self-destructed
// account is still accessible in the scope of same transaction.
selfDestructed bool
// This is an EIP-6780 flag indicating whether the object is eligible for
// self-destruct according to EIP-6780. The flag could be set either when
// the contract is just created within the current transaction, or when the
// object was previously existent and is being deployed as a contract within
// the current transaction.
newContract bool
}
// empty returns whether the account is considered empty.
func (s *stateObject) empty() bool {
return s.data.Nonce == 0 && s.data.Balance.IsZero() && bytes.Equal(s.data.CodeHash, types.EmptyCodeHash.Bytes())
}
// newObject creates a state object.
func newObject(db *StateDB, address common.Address, acct *types.StateAccount) *stateObject {
origin := acct
if acct == nil {
acct = types.NewEmptyStateAccount()
}
return &stateObject{
db: db,
address: address,
addrHash: crypto.Keccak256Hash(address[:]),
origin: origin,
data: *acct,
originStorage: make(Storage),
pendingStorage: make(Storage),
dirtyStorage: make(Storage),
}
}
// EncodeRLP implements rlp.Encoder.
func (s *stateObject) EncodeRLP(w io.Writer) error {
return rlp.Encode(w, &s.data)
}
func (s *stateObject) markSelfdestructed() {
s.selfDestructed = true
}
func (s *stateObject) touch() {
s.db.journal.append(touchChange{
account: &s.address,
})
if s.address == ripemd {
// Explicitly put it in the dirty-cache, which is otherwise generated from
// flattened journals.
s.db.journal.dirty(s.address)
}
}
// getTrie returns the associated storage trie. The trie will be opened if it's
// not loaded previously. An error will be returned if trie can't be loaded.
//
// If a new trie is opened, it will be cached within the state object to allow
// subsequent reads to expand the same trie instead of reloading from disk.
func (s *stateObject) getTrie() (Trie, error) {
if s.trie == nil {
tr, err := s.db.db.OpenStorageTrie(s.db.originalRoot, s.address, s.data.Root, s.db.trie)
if err != nil {
return nil, err
}
s.trie = tr
}
return s.trie, nil
}
// getPrefetchedTrie returns the associated trie, as populated by the prefetcher
// if it's available.
//
// Note, opposed to getTrie, this method will *NOT* blindly cache the resulting
// trie in the state object. The caller might want to do that, but it's cleaner
// to break the hidden interdependency between retrieving tries from the db or
// from the prefetcher.
func (s *stateObject) getPrefetchedTrie() Trie {
// If there's nothing to meaningfully return, let the user figure it out by
// pulling the trie from disk.
if s.data.Root == types.EmptyRootHash || s.db.prefetcher == nil {
return nil
}
// Attempt to retrieve the trie from the prefetcher
return s.db.prefetcher.trie(s.addrHash, s.data.Root)
}
// GetState retrieves a value from the account storage trie.
func (s *stateObject) GetState(key common.Hash) common.Hash {
value, _ := s.getState(key)
return value
}
// getState retrieves a value associated with the given storage key, along with
// its original value.
func (s *stateObject) getState(key common.Hash) (common.Hash, common.Hash) {
origin := s.GetCommittedState(key)
value, dirty := s.dirtyStorage[key]
if dirty {
return value, origin
}
return origin, origin
}
// GetCommittedState retrieves a value from the committed account storage trie.
func (s *stateObject) GetCommittedState(key common.Hash) common.Hash {
// If we have a pending write or clean cached, return that
if value, pending := s.pendingStorage[key]; pending {
return value
}
if value, cached := s.originStorage[key]; cached {
return value
}
// If the object was destructed in *this* block (and potentially resurrected),
// the storage has been cleared out, and we should *not* consult the previous
// database about any storage values. The only possible alternatives are:
// 1) resurrect happened, and new slot values were set -- those should
// have been handles via pendingStorage above.
// 2) we don't have new values, and can deliver empty response back
if _, destructed := s.db.stateObjectsDestruct[s.address]; destructed {
return common.Hash{}
}
// If no live objects are available, attempt to use snapshots
var (
enc []byte
err error
value common.Hash
)
if s.db.snap != nil {
start := time.Now()
enc, err = s.db.snap.Storage(s.addrHash, crypto.Keccak256Hash(key.Bytes()))
s.db.SnapshotStorageReads += time.Since(start)
if len(enc) > 0 {
_, content, _, err := rlp.Split(enc)
if err != nil {
s.db.setError(err)
}
value.SetBytes(content)
}
}
// If the snapshot is unavailable or reading from it fails, load from the database.
if s.db.snap == nil || err != nil {
start := time.Now()
tr, err := s.getTrie()
if err != nil {
s.db.setError(err)
return common.Hash{}
}
val, err := tr.GetStorage(s.address, key.Bytes())
s.db.StorageReads += time.Since(start)
if err != nil {
s.db.setError(err)
return common.Hash{}
}
value.SetBytes(val)
}
s.originStorage[key] = value
return value
}
// SetState updates a value in account storage.
func (s *stateObject) SetState(key, value common.Hash) {
// If the new value is the same as old, don't set. Otherwise, track only the
// dirty changes, supporting reverting all of it back to no change.
prev, origin := s.getState(key)
if prev == value {
return
}
// New value is different, update and journal the change
s.db.journal.append(storageChange{
account: &s.address,
key: key,
prevvalue: prev,
origvalue: origin,
})
if s.db.logger != nil && s.db.logger.OnStorageChange != nil {
s.db.logger.OnStorageChange(s.address, key, prev, value)
}
s.setState(key, value, origin)
}
// setState updates a value in account dirty storage. The dirtiness will be
// removed if the value being set equals to the original value.
func (s *stateObject) setState(key common.Hash, value common.Hash, origin common.Hash) {
// Storage slot is set back to its original value, undo the dirty marker
if value == origin {
delete(s.dirtyStorage, key)
return
}
s.dirtyStorage[key] = value
}
// finalise moves all dirty storage slots into the pending area to be hashed or
// committed later. It is invoked at the end of every transaction.
func (s *stateObject) finalise() {
slotsToPrefetch := make([][]byte, 0, len(s.dirtyStorage))
for key, value := range s.dirtyStorage {
// If the slot is different from its original value, move it into the
// pending area to be committed at the end of the block (and prefetch
// the pathways).
if value != s.originStorage[key] {
s.pendingStorage[key] = value
slotsToPrefetch = append(slotsToPrefetch, common.CopyBytes(key[:])) // Copy needed for closure
} else {
// Otherwise, the slot was reverted to its original value, remove it
// from the pending area to avoid thrashing the data structure.
delete(s.pendingStorage, key)
}
}
if s.db.prefetcher != nil && len(slotsToPrefetch) > 0 && s.data.Root != types.EmptyRootHash {
if err := s.db.prefetcher.prefetch(s.addrHash, s.data.Root, s.address, slotsToPrefetch); err != nil {
log.Error("Failed to prefetch slots", "addr", s.address, "slots", len(slotsToPrefetch), "err", err)
}
}
if len(s.dirtyStorage) > 0 {
s.dirtyStorage = make(Storage)
}
// Revoke the flag at the end of the transaction. It finalizes the status
// of the newly-created object as it's no longer eligible for self-destruct
// by EIP-6780. For non-newly-created objects, it's a no-op.
s.newContract = false
}
// updateTrie is responsible for persisting cached storage changes into the
// object's storage trie. In case the storage trie is not yet loaded, this
// function will load the trie automatically. If any issues arise during the
// loading or updating of the trie, an error will be returned. Furthermore,
// this function will return the mutated storage trie, or nil if there is no
// storage change at all.
//
// It assumes all the dirty storage slots have been finalized before.
func (s *stateObject) updateTrie() (Trie, error) {
// Short circuit if nothing changed, don't bother with hashing anything
if len(s.pendingStorage) == 0 {
return s.trie, nil
}
// Retrieve a pretecher populated trie, or fall back to the database
tr := s.getPrefetchedTrie()
if tr != nil {
// Prefetcher returned a live trie, swap it out for the current one
s.trie = tr
} else {
// Fetcher not running or empty trie, fallback to the database trie
var err error
tr, err = s.getTrie()
if err != nil {
s.db.setError(err)
return nil, err
}
}
// The snapshot storage map for the object
var (
storage map[common.Hash][]byte
origin map[common.Hash][]byte
)
// Insert all the pending storage updates into the trie
usedStorage := make([][]byte, 0, len(s.pendingStorage))
hasher := hasherPool.Get().(crypto.KeccakState)
defer hasherPool.Put(hasher)
// Perform trie updates before deletions. This prevents resolution of unnecessary trie nodes
// in circumstances similar to the following:
//
// Consider nodes `A` and `B` who share the same full node parent `P` and have no other siblings.
// During the execution of a block:
// - `A` is deleted,
// - `C` is created, and also shares the parent `P`.
// If the deletion is handled first, then `P` would be left with only one child, thus collapsed
// into a shortnode. This requires `B` to be resolved from disk.
// Whereas if the created node is handled first, then the collapse is avoided, and `B` is not resolved.
var deletions []common.Hash
for key, value := range s.pendingStorage {
// Skip noop changes, persist actual changes
if value == s.originStorage[key] {
continue
}
prev := s.originStorage[key]
s.originStorage[key] = value
var encoded []byte // rlp-encoded value to be used by the snapshot
if (value != common.Hash{}) {
// Encoding []byte cannot fail, ok to ignore the error.
trimmed := common.TrimLeftZeroes(value[:])
encoded, _ = rlp.EncodeToBytes(trimmed)
if err := tr.UpdateStorage(s.address, key[:], trimmed); err != nil {
s.db.setError(err)
return nil, err
}
s.db.StorageUpdated.Add(1)
} else {
deletions = append(deletions, key)
}
// Cache the mutated storage slots until commit
if storage == nil {
s.db.storagesLock.Lock()
if storage = s.db.storages[s.addrHash]; storage == nil {
storage = make(map[common.Hash][]byte)
s.db.storages[s.addrHash] = storage
}
s.db.storagesLock.Unlock()
}
khash := crypto.HashData(hasher, key[:])
storage[khash] = encoded // encoded will be nil if it's deleted
// Cache the original value of mutated storage slots
if origin == nil {
s.db.storagesLock.Lock()
if origin = s.db.storagesOrigin[s.address]; origin == nil {
origin = make(map[common.Hash][]byte)
s.db.storagesOrigin[s.address] = origin
}
s.db.storagesLock.Unlock()
}
// Track the original value of slot only if it's mutated first time
if _, ok := origin[khash]; !ok {
if prev == (common.Hash{}) {
origin[khash] = nil // nil if it was not present previously
} else {
// Encoding []byte cannot fail, ok to ignore the error.
b, _ := rlp.EncodeToBytes(common.TrimLeftZeroes(prev[:]))
origin[khash] = b
}
}
// Cache the items for preloading
usedStorage = append(usedStorage, common.CopyBytes(key[:])) // Copy needed for closure
}
for _, key := range deletions {
if err := tr.DeleteStorage(s.address, key[:]); err != nil {
s.db.setError(err)
return nil, err
}
s.db.StorageDeleted.Add(1)
}
// If no slots were touched, issue a warning as we shouldn't have done all
// the above work in the first place
if len(usedStorage) == 0 {
log.Error("State object update was noop", "addr", s.address, "slots", len(s.pendingStorage))
}
if s.db.prefetcher != nil {
s.db.prefetcher.used(s.addrHash, s.data.Root, usedStorage)
}
s.pendingStorage = make(Storage) // reset pending map
return tr, nil
}
// updateRoot flushes all cached storage mutations to trie, recalculating the
// new storage trie root.
func (s *stateObject) updateRoot() {
// Flush cached storage mutations into trie, short circuit if any error
// is occurred or there is no change in the trie.
tr, err := s.updateTrie()
if err != nil || tr == nil {
return
}
s.data.Root = tr.Hash()
}
// commit obtains a set of dirty storage trie nodes and updates the account data.
// The returned set can be nil if nothing to commit. This function assumes all
// storage mutations have already been flushed into trie by updateRoot.
//
// Note, commit may run concurrently across all the state objects. Do not assume
// thread-safe access to the statedb.
func (s *stateObject) commit() (*trienode.NodeSet, error) {
// Short circuit if trie is not even loaded, don't bother with committing anything
if s.trie == nil {
s.origin = s.data.Copy()
return nil, nil
}
// The trie is currently in an open state and could potentially contain
// cached mutations. Call commit to acquire a set of nodes that have been
// modified, the set can be nil if nothing to commit.
root, nodes, err := s.trie.Commit(false)
if err != nil {
return nil, err
}
s.data.Root = root
// Update original account data after commit
s.origin = s.data.Copy()
return nodes, nil
}
// AddBalance adds amount to s's balance.
// It is used to add funds to the destination account of a transfer.
func (s *stateObject) AddBalance(amount *uint256.Int, reason tracing.BalanceChangeReason) {
// EIP161: We must check emptiness for the objects such that the account
// clearing (0,0,0 objects) can take effect.
if amount.IsZero() {
if s.empty() {
s.touch()
}
return
}
s.SetBalance(new(uint256.Int).Add(s.Balance(), amount), reason)
}
// SubBalance removes amount from s's balance.
// It is used to remove funds from the origin account of a transfer.
func (s *stateObject) SubBalance(amount *uint256.Int, reason tracing.BalanceChangeReason) {
if amount.IsZero() {
return
}
s.SetBalance(new(uint256.Int).Sub(s.Balance(), amount), reason)
}
func (s *stateObject) SetBalance(amount *uint256.Int, reason tracing.BalanceChangeReason) {
s.db.journal.append(balanceChange{
account: &s.address,
prev: new(uint256.Int).Set(s.data.Balance),
})
if s.db.logger != nil && s.db.logger.OnBalanceChange != nil {
s.db.logger.OnBalanceChange(s.address, s.Balance().ToBig(), amount.ToBig(), reason)
}
s.setBalance(amount)
}
func (s *stateObject) setBalance(amount *uint256.Int) {
s.data.Balance = amount
}
func (s *stateObject) deepCopy(db *StateDB) *stateObject {
obj := &stateObject{
db: db,
address: s.address,
addrHash: s.addrHash,
origin: s.origin,
data: s.data,
code: s.code,
originStorage: s.originStorage.Copy(),
pendingStorage: s.pendingStorage.Copy(),
dirtyStorage: s.dirtyStorage.Copy(),
dirtyCode: s.dirtyCode,
selfDestructed: s.selfDestructed,
newContract: s.newContract,
}
if s.trie != nil {
obj.trie = db.db.CopyTrie(s.trie)
}
return obj
}
//
// Attribute accessors
//
2022-10-04 08:44:05 +02:00
// Address returns the address of the contract/account
func (s *stateObject) Address() common.Address {
return s.address
}
// Code returns the contract code associated with this object, if any.
func (s *stateObject) Code() []byte {
if len(s.code) != 0 {
return s.code
}
if bytes.Equal(s.CodeHash(), types.EmptyCodeHash.Bytes()) {
return nil
}
code, err := s.db.db.ContractCode(s.address, common.BytesToHash(s.CodeHash()))
if err != nil {
s.db.setError(fmt.Errorf("can't load code hash %x: %v", s.CodeHash(), err))
}
s.code = code
return code
2014-11-03 23:45:44 +01:00
}
// CodeSize returns the size of the contract code associated with this object,
// or zero if none. This method is an almost mirror of Code, but uses a cache
// inside the database to avoid loading codes seen recently.
func (s *stateObject) CodeSize() int {
if len(s.code) != 0 {
return len(s.code)
}
if bytes.Equal(s.CodeHash(), types.EmptyCodeHash.Bytes()) {
return 0
}
size, err := s.db.db.ContractCodeSize(s.address, common.BytesToHash(s.CodeHash()))
if err != nil {
s.db.setError(fmt.Errorf("can't load code size %x: %v", s.CodeHash(), err))
}
return size
}
func (s *stateObject) SetCode(codeHash common.Hash, code []byte) {
prevcode := s.Code()
s.db.journal.append(codeChange{
account: &s.address,
prevhash: s.CodeHash(),
prevcode: prevcode,
})
if s.db.logger != nil && s.db.logger.OnCodeChange != nil {
s.db.logger.OnCodeChange(s.address, common.BytesToHash(s.CodeHash()), prevcode, codeHash, code)
}
s.setCode(codeHash, code)
}
func (s *stateObject) setCode(codeHash common.Hash, code []byte) {
s.code = code
s.data.CodeHash = codeHash[:]
s.dirtyCode = true
}
func (s *stateObject) SetNonce(nonce uint64) {
s.db.journal.append(nonceChange{
account: &s.address,
prev: s.data.Nonce,
})
if s.db.logger != nil && s.db.logger.OnNonceChange != nil {
s.db.logger.OnNonceChange(s.address, s.data.Nonce, nonce)
}
s.setNonce(nonce)
}
func (s *stateObject) setNonce(nonce uint64) {
s.data.Nonce = nonce
}
func (s *stateObject) CodeHash() []byte {
return s.data.CodeHash
}
func (s *stateObject) Balance() *uint256.Int {
return s.data.Balance
}
func (s *stateObject) Nonce() uint64 {
return s.data.Nonce
}
func (s *stateObject) Root() common.Hash {
return s.data.Root
}